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Amplitude of forced vibration

Definition

One can prove that the nonlinear integral equation

x(t) = ω2

∫ 1

0
G (t, s)ρ(s)x(s)ds +

∫ 1

0
G (t, s)q(s)ds, t ∈ [0, 1],

where G (t, s) =

{
t(1− s), for 0 ≤ t ≤ s ≤ 1,

s(1− t), for 0 ≤ s ≤ t ≤ 1,

under suitable assumptions on functions ρ and q, and the constant
ω, possesses a unique continuous solution on [0, 1], being a
function of bounded variation in the sense of Jordan.



Space BV [0, 1]

Definition

Let x : [0, 1]→ R. The number

var(x) = sup
n∑

i=1

|x(ti )− x(ti−1)|,

where the supremum is taken over all the partitions 0 = t0 < . . . <
tn = 1 of the interval [0, 1] is said to be the variation of the function
x in the sense of Jordan over the interval [0, 1].

Remark

The space

BV [0, 1] =
{

x : [0, 1]→ R : var(x) < +∞
}

endowed with the norm ‖x‖BV = |x(0)|+ var(x) is a Banach space.
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Convolution operators

Definition

If f and g are real-valued functions defined on R, then their
convolution is defined by

f ? g(x) =

+∞∫
−∞

f (x − t)g(t)dt,

provided the above integral exists.



Convolution operators

Theorem (Talvila, 2002)

Let f ∈ HK and g ∈ BV . Then f ? g exists on R and

|f ? g(x)| ≤ ‖f ‖(inf |g |+ var(g)) for all x ∈ R,

where ‖f ‖ denotes the Alexiewicz norm of the function f .

Theorem (Talvila, 2002)

Let f ∈ HK and g ∈ L1 ∩ BV . Then f ? g exists on R and

‖f ? g‖ ≤ ‖f ‖‖g‖1.
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Superposition operators

Definition

For given function f : [0, 1]× R→ R we define the
nonautonomous superposition operator F, generated by f , as

F (x)(t) = f (t, x(t)),

where x is a real-valued function defined on [0, 1].

Definition

In the case when f : R→ R, the operator F , generated by f , is
said to be the autonomous superposition operator.
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Superposition operators

Theorem (Josephy, 1981)

For f : R→ R the superposition f ◦ x belongs to the space
BV [0, 1] for all x ∈ BV [0, 1] if and only if f satisfies the local
Lipschitz condition on [0, 1].

Theorem (Ljamin, 1986)

Suppose that the function f (s, ·) satisfies the Lipschitz condition
on R, uniformly in s ∈ [0, 1], and the function f (·, u) is of bounded
variation in the sense of Jordan on [0, 1], uniformly in u ∈ R. Then
the nonautonomous superposition operator F , generated by f ,
maps the space BV [0, 1] into itself and it is bounded.
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Counterexample of Ljamin’s theorem

Example (Maćkowiak, 2012)

Let f : [0, 1]× R→ R be defined as

f (x , y) =

{
0, ∀n ∈ {2, 3, . . .} : x 6= cn or y /∈ In,
1
n

(
1− |y−cn|wn

)
, ∃n ∈ {2, 3, . . .} : x = cn and y ∈ In,

where cn = 1− 1
n , wn = 1

2n , In = (cn − wn, cn + wn), for
n = 2, 3, . . ..
For any x ∈ [0, 1], the function f (x , ·) satisfies the Lipschitz
condition uniformly in x , with a Lipschitz constant not greater that
2 and var(f (·, y)) ≤ 22 for any y ∈ R.



Counterexample of Ljamin’s theorem

Example (continuation)

However, the nonautonomous superposition operator generated by
f does not map the space BV [0, 1] into itself. Indeed, let u(x) = x
and g(x) = f (x , u(x)) for x ∈ [0, 1]. Obviously, var(u) = 1.
Moreover,

g(x) =

{
1
n , if x = cn,

0, if x 6= cn,

what gives var(g) = +∞.



Sufficient condition

Theorem (D. Bugajewska, 2010)

Suppose that a function f : [0, 1]× R→ R, (t, u)→ f (t, u)
satisfies the local Lipschitz condition on R, uniformly in t ∈ [0, 1].
Moreover, assume that for every r > 0 there exists a constant
Mr > 0 such that for every k ∈ N, every partition t0 < . . . < tk of
[0, 1] and every u0, . . . , uk−1 ∈ [−r , r ], the following implication
holds

k−1∑
i=1

|ui − ui−1| ≤ r =⇒
k∑

i=1

|f (ti , ui−1)− f (ti−1, ui−1)| < Mr . (1)

Then the superposition operator F , generated by f , maps the
space BV [0, 1] into itself and it is locally bounded.



Nonlinear integral operators

Theorem (D. Bugajewski, 2003)

Let I = [0, 1]. Assume that:

(a) g : I → R is a BV -function;

(b) f : R→ R is a locally Lipschitz function;

(c) K : I × I → R is a function such that var(K (·, s)) ≤ M(s) for
a.e. s ∈ I , where M : I → R+ is integrable in the Lebesgue
sense and K (t, ·) is integrable in the Lebesgue sense for every
t ∈ I .

Then there exists a number ρ > 0 such that for every λ satisfying
|λ| < ρ, the equation

x(t) = g(t) + λ

∫
I

K (t, s)f (x(s))ds, t ∈ I , λ ∈ R

possesses a unique BV -solution, defined on I .



Nonlinear integral operators

Theorem (D. Bugajewski, 2003)

Suppose that (a) and (b) are satisfied. Assume also that

(d) T = {(t, s) : 0 ≤ t ≤ a, 0 ≤ s ≤ t} and K : T → R is a
function such that |K (s, s)|+ var(K (·, s); [s, a]) ≤ m(s) for
a.e. s ∈ I , where m : I → R+ is integrable in the Lebesgue
sense and K (t, ·) is integrable in the Lebesgue sense on [0, t]
for every t ∈ I .

Then there exists an interval J ⊂ I such that the equation

x(t) = g(t) +

∫ t

0
K (t, s)f (x(s))ds t ∈ I

possesses a unique BV -solution, defined on J.



Appendix

Theorem (D.B., D.B., P.K., P.M., 2013)

Suppose that a function f : [0, 1]× R→ R, (t, u)→ f (t, u)
satisfies the local Lipschitz condition on R, uniformly in t ∈ [0, 1]
and that the superposition operator F , generated by f , maps the
space BV [0, 1] into itself and it is locally bounded. Then for
arbitrary positive number r there exists a constant Mr > 0 such
that for every k ∈ N, every partition t0 < . . . < tk of [0, 1] and
every u0, . . . , uk−1 ∈ [−r , r ] the implication (1) holds.
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P. Maćkowiak, A counterexample to Lyamin’s theorem, PAMS (in
press).

E. Talvila, Henstock-Kurzweil Fourier transforms, Illinois J. Math.
46(2002), 1207-1226.


